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if Section 1. Introduction
P
Q{? Over the last ten years there has been a spectacular
I\ -.

~n
Ty increase on research and applications of boundary element
'ﬂy techniques. There has been an explosion of books as well
'f:‘:

o as a series of Intern-~tio-al Conferences [10]}, specially
"

AL,

N dedicated to boundary ei :mnent methods (BEM). The state of
f;& the art of asymptotic error estimates of the h-version for
" BEM is described in several detailed articles (see for
o
é ' example [24], [25]). There the theoretical framework for
ﬁj both first-kind and second-kind integral equations is the
g
;j theory of pseudodifferential operators. As observed in
-

0
Fag {21) one has for strongly elliptic pseudodifferential
;Hﬂ operators convergence of any Galerkin scheme with conforming
‘4"”‘:-v

7,

Mo boundary elements; also there holds quasioptimality of the
A,

' ? Galerkin error in the energy norm.

j} Almost all work on BEM has been performed with the
‘Ei h-version, where the degree p of the elements is fixed,
*;' usually on low level, typically p = 0,1,2 and the accuracy
Py
'Eﬁ is achieved by properly refining the mesh. Only recently
if the p-version has been introduced into the BEM [1], [2],
By
AN
T [3), [26]. The p-version fixes the mesh and achieves the
i;i
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?.-
o
?iﬁ - accuracy by increasing the degrees p of the elements
,ﬁ€ uniformly or selectively. 1In the finite element method
k?: (FEM) the convergence of the p-version has been thoroughly
gé investigated for one- and two-dimensional boundary value
:;z problems in a series of papers by Babuska and others {43,
fi{ [5), [6}, [7]), [12])]. Meanwhile convergence results have also
Et; been derived for the h-p version of the finite element
w method which is a combination of the standard h-version and
-::;::I the p-version [4]), [8}, (13), [(14].
;i? In this paper, we prove the convergence of the p-version
r:i for some Galerkin boundary element schemes which use first-
,33 kind integral equations. In Section 2 we introduce the
53% function spaces and corresponding norms used later on. 1In
(\* Section 3.1 we show that the rate of convergence of the
;Eg; p-version is an optimal one in the H'/? and 171/ 2 norms
:E%' generalizing known results for #! and L2-norms. 1In Sections 3.2,

3.3 we approximate singular functions by the p-version in

the ﬁl/z and ﬁ-l/z

Sala
. 4

.
i e

-norms and we derive convergence rates

.
‘I ‘l

which are twice the rate of the h-version with uniform

I'.l"l'.l. LA )
]

r.,

; é mesh. In Section 4 we apply the approximation results of

’?é Section 3 to the Galerkin BEM for several integral equations

?g& which are strongly elliptic pseuvdodifferential equations. __““—
A As examples, we consider the two-dimensional screen Neumann [?
ﬁg; and Dirichlet problems in acoustics where sharp regularity |
2?. results for the solutions are available [22}, [23].

Lo

Furthermore, we give first-kind boundary integral equations

arxic
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WNSPECTED

A R A R R - - - Wt e e e e R A R
RSN AR -.'"-:"‘.'P."’\' eteS S WA e



governing the exterior Dirichlet and Neumann problems of

the three-dimensional Helmholtz equation and we present the

convergence rates for the p-version of the corresponding

boundary element Galerkin schemes.
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Section 2. Notation
Let T be a simply connected, bounded, smooth, closed
curve in m2 and T be a connected subset of T. By C(k)(F),

0 < k £ » (k integer), we denote the space of all functions
with continuous derivatives of order up to k on F. The
Sobolev spaces HS(T) are defined for s > 0 to be the restric-

s+1/2

tions of H (IRZ) toT and for s < 0 by duality,

HS(T) = (#~5(T))

with HO(F) = Lz(F). These spaces are used to define the
corresponding spaces of distributions on I', namely, for any

real s,
HS(T) = {u ¢ HS(T): supp u < T}
HS(T) = {ulr: u ¢ HS(T)}.

The above spaces are normed as follows. For u defined
on ', let fu denote any extension of u on [ and u* denote
the zero extension of u on T'. Then

= lu*{] _ . (2.1)
o

[lul] .
H5(T) (T)

= inf{ |[oull o _ & tu e B9 () (2.2)
1 ")

[[ull
HS(T) 1% (1

Note that for s > 1/2, s # integer + 1/2, ﬁs(r) is the usual

ng(r) space and for -1/2 < s < 172, HS(T) = HS(I'). For

s - -1/2, s # integer + 1/2, HS(r) = (B S(I))'. We will be

o
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particularly interested in the cases s = 1/2 and s = -1/2.

172

For s = 1/2, the space ﬁl/z(r) is also denoted by Hoo (r),

with the egquivalent norm (see [18]))

23, (2.3)

2 2 2
Hull = ||ul] + H(-x%)
A72 a7 2(r) no ()

(1)

where for nplicity, we have assumed T

(~1,+1) (the general
case can be treated by affine maps) and x denotes the arc

length. 1In terms of duality, the following relations hold

w2y = @it 2o, w2 - w2

Let T be of length 2w, then HS(T) may be considered to
be spaces of 2r-periodic functions. For u ¢ HS(T), we may
then write

u(ft) - Y a, cos 35 + § b. sin jf (2.4)
-0} j=1 )

so that the HS(T) norm may be equivalently defined by

o

ol =17 aland® e 7 pashnl? @)

=1

For T a smooth open arc, we will define Pp(I) to be the
set of all algebraic polynomials cf degree less than or
equal to p in s, the arc length parameter. Pg(I) will denote
the subset of polynomials vanishing at the end points of I.
Let us now subdivide T into N pieces, T - 'ﬁ Ti' such
that Fs is a smooth open arc with end points Aii;}Ai

(AO = AN). Then for p 2 0, SP(F) will denote the set of all

functions u defined on T such that the restriction ulr to Fi
i

.....
-------



i
‘E; belongs to Pp(ri). Moreover, we set for p 2 1,
J‘. ~ ~ ~
- vo(F) = s (P 0 et
2
. We may assume that I may be partitioned analogously and
:Ff define sp(r), VP(T) as above. Then sg(r), vg(r) will denote
- the subsets of functions that vanish at the end points of T.
;xi Note that Sp(F) (Sp(F)) is a subset of H—l/z(F)
(17 172(r)) while v (F) (v () is a subset of ul/2 (7
2/2(ry) ana vg(r) is a subset of A-/2(r).
; So far we have dealt with the one-dimensional case.
;; We will also be interested in a simply connected, bounded,
;f smooth, closed surface T - ]R3 . The definitions of H®(T)
é& are analogous to the previous case. We now assume that T
(ﬁ: 1s partitioned into curvilinear quadrilaterals and triangles,
E i.e., T - '? Fi' Let Q and T be the reference square and
2; triangle rég;ectively, then Fi = Fi(Q) or Fi(T), where Fi
. is a smooth bijective mapping. We assume that the inter-
N section of any two disjoint Fi's is either the empty set or
iﬁ a common vertex or a common side.
‘? Ry P;(T) we will denote the set of all polynomials of
53 total degree < p on the triangle T, V;(Q) will denote the
EE set of all polynomials of degree < p in each variable on Q.
- We define
f; Sp(?) - {ululri(Fj(ﬂ)) . PL(T) if T, is a triangle and
¢ 2 : : :
\ ; "'r.(ri(ﬁ))( Pp(o) if T, is a quadrilateral} (2.6)

s 1

-2 and Vp(F) - Sp(T) n C(O)(F). (2.7)
Y
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Section 3. Approximation Theorems

In this section, we will be interested in obtaining
estimates for the approximation of functions in HS(F), HS ()
and HS(T) by piecewise polynomials belonging to the poly-

nomial subspaces introduced in the previous section.

3.1. Approximation of Functions in H®

We first present some results for the case when u, the
function being approximated is known to lie in HS. These
will be used by us in the next section for approximating
problems on closed curves and closed surfaces.

In what follows, T will denote either a closed curve

or a closed surface.

Thecwom 3.1. Let y =T o2 T. Lot u e Hs(y), s > 1/2. Then
foer p = 1,2,... therne exi{st4 up € vp(y) Auch that

< cp 571/2) 1y . (3.1)
() H™ (v)

u-u
lo=u 4y
wheve the constant C (s (ndependent o4 u and p but depends
on s and the pantition on y. Moreoven, fonr u « ﬁs(r),

< Cp_(s_l/z) loql/zp ||u||~s (3.2)

lu-u_{[_
P /%1 NS ()

Preef. The estimate (3.1) follows by interpolating the approxi-

0 and H]

mation estimates for the p-version obtained in the H
norm (see [6]). In [7], an alternative proof (for closed
curves) using Chebyshev expansions is provided in Theorem 3.2.

Moreover, (3.2) 1is also proved in this theorem, the procedure
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being similar to our proof of Theorem 3.3 in Section 3.2. 0

The above theorem provides estimates for the error of the

best approximation in the H1/2 l/2

provides estimates in the H-l/z norm. It has been proved in [9]

for vy being a closed curve and it is included here for completeness

Thecnem 3.2. Let v = T on I'y u e Hs(y), s > 0. Then fox

p=20,1,2,... there ex{sts up € Vp(y) such that

< Cp"(s+1/2) [ull (3.3)

lu-u Il
PUETM 2 (y) 1S (v)

where C (4 a constant independent of u and p but depends upon

s and the gndid on Y.

Proof. Let up € Vp(y) satisfy

Ju w df = fuw df for all w ¢ V_(y). (3.4)
., P p
Y Y
Then, with e = u—up, we have (see [13])
lell o <cp®llull (3.5)
H" (y) H” (v)

Now, for arbitrary v « Hl(y), we have by (3.4),

fevdE fe(v-y)df el 0 -yl 0
Y _Y < H (y) (vy)
vl vl 1 B vl 1
H™ (Y) H™ (v) H™ (y)
-1
< Cp = |lel
HO(Y)

where y ¢ Vp(Y) satisfies

-1
HV‘Y” 0 < Cp ”V” 1
H™ (Y) H

(v)

and H norms. The next theorem




This yields

“s*D) )

Hell < Cp (3.6)
(1Y (y)) HS (v)
Interpolating (3.5), (3.6) and using the fact that
~~1/2 _ 1/2, Voo 0
H (vy) = (H (v)) (H (y),B (Y))l/2
_ 1 . 0
we obtain (3.4). ]

~

Remark 3.1, For y = T, we have H'(I) = HX(r). For y = 1,

we have ||+ < ff-”~_1/2 . Hence, in either case,

H—l/z(r)
(3.3) yields

llu-u_|] cp” (S*1/2) 1y

_ < Cp (3.7)
Py 2, n®

(y)

Remark 3.2. Since Vp(Y) c Sp(y), we see that (3.3) and (3.7)

1so hold for some u S .
a p € p(Y)

Remark 3.3. So far we have assumed that T and T are smooth.
The above theorems may also be modified to the case when

T and T are only piecewise smooth.

3.2. §1/2 Approximation of Singular Functions

We are interested here in approximating functions that
are defined on the curve T and have square root singularities
at the end points. For simplicity, we consider a function

u defined on I = [-1,+1] by

ulx) = (41325 (%) (3.8)

-----------

--.- " _'-" e :‘- . ...‘ ..\ - . .\ - . - R g . ‘.
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where x is a c” function satisfying

-1/2

i

[
-

i
p—
74}
»
in

¥ (x)

We consider the approximation of u in the ﬁl/z(I) norm by
functions in Pp(I).

et I = [-7,7}. (We may consider I to be a closed circle.)
Let u be transformed to the periodic function u on I by the

mapping x = cos %, i.e., U(£) = ulx). Then we see that

/2

u(f) = (l+cos E)l x (cos &) = V2x(cos F){(cos(f/2)) (3.9)

The following lemma is taken from [7].

~ 1/2
Lemma 3.1. [l ~ ||ull forn any u < H (1).
nl/? (1) H1/2

(1)

The main theorem of this section is the following.

Theonem 3.3. Let u be defined by (3.8). Then for p =1,2,...

there exiats a pclyncmialf ug

in Pp(I) such that
0
up(fl) = u(+l1) (3.10)
and

liu-ugllfl/z( | < Cp = log p (3.11)
I I

Proof. We first consider the image u of u, which (being even)

may be written as

o
u(f) = 7 a cos k&. (3.12)
k=0
A T T e e T T T T T T T T T e
" e a > ak M‘-.mQ}J}A‘._A—-‘JnrA\A"J FERSINTG VS VO A PR




where up

1s defined by

. p
uooT 3 ay cos kf
4 k=0 "

and where u is a linear function such that ug

condition (3.10), i such that

e.,

(1) = (u-u_ ) (*1) = (ﬁ~up)(cos‘l

P

We now estimate the coefficients ay in (3.12

n
u cos kf d4 = C [ x(cos f)co
0

~
g

0

1l

cos ((

Here, C may represent different constants.

parts gives,

a, = Cixteos £y (sin( ey oy sinc b Loy
m
£ 1 x'(eos £)sin Elsin (S mhe v sinc o e

0

So that with x'(*1)

TR E) Ydx

= 0 further integration by parts yields

(3.14)

satisfies the

(*1)) (3.15)

). We have
I
s(f)cos k& dag

2k-1

Integrating by

i
1 . 1 1 3 1
]akl < C{;j + ldfx (cos E)[cos((k -3 R sy - cos ik +3) D) gy
3 1 1
4 COC;((k'j)E)j‘}Z;T - cos((k +—?-)E)—2T(]::-]—]d{l}
) . | sin(k-—%)& sin(k~+%)£
< C{;7 * ‘df x"(cos L)sin Kl iy okoTy T T2RF) (2K

sin(k - 306 sin(k + )£

PRV TIR=3) T TRV TR LY

]




Now since x" and all the sine functions are bounded indepen-

dent of k, we obtain

C
la, | <« —= (3.16)
k k2
We now estimate {u-u_|| By Lemma 3.1, (2.5), (3.12),
p Hl/z(I)
and (3.14), we have
H (1) (1) k=p+1
2,1/2
<cC 1 m——(l”‘z
p+l k
. : e C
which behaves like [ -3 dx = — . Hence,
P+l x P
C
u-u < = 3.17
lomugll 1yo %5 (3.17)
Next, we estimate |ju | . Since u is linear,
1/2
H (1)
hall 1,5 < C{ju(+1)| + Ju(-1) ]} (3.18)
H (1)
Now for any x, by (3.12), (3.14),
[tw-u o] < 2 Ja | s 2 < << (3.19)
P K=p+1 k=p+1 k* P
Using (3.15), (3.19), and (3.18), we see that
- C
Mall < = (3.20)
H1/2(I) p
which combined with (3.17) yields
0 C
-u < = 3.21
B V- (3.21)

........
................

-----




By (2.3), we know that
0 0 2. -1/2 0
flu-ul I < flu-u_|i 4+l (1-x%) (u-u_) |
P21, PU /2 P w0
(3.22)
Hence we must bound the second term. We have
1
1 ) i/p " 7p n -
i (l—x2) 1(u~u(1)2dx = (f + o+ fl)(u—uo)z(sin £) ldé
-1 F 0 1/p  r -2 P
p (3.23)
Now ;i is bounded on ll n -l] Hence, using (3.19)
Sln 'f’ p 4 p . ) b g .
1 1
m -5 n —E)_
! (G—Gg)z(sin £) g < 1% / (sin £) lag
1/p p° 1/p
< J% log p (3.24)
p

Also, let [a] denote the integral part of a. Then it

may be verified that with

we obtain with (3.13)

m on

= ) a,.(cos 2j£-1) + )
2]

. pt2

]’:(—7—]

~ »0
u-u
p
which satisfies

(G-Gg)(cos_l(!l)) =

as required in (3.10). Hence,

a2j+1(cos(2j+l)€—cos £)
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14
(6-02)2 < c(( 1  a,.(cos 2je-1))°2
P +2 23
=(BI<)
I=1
+ ( 3 a2j+1(cos(2j+1)£-cos &))2}
=[Eil]
1=153
cclt 1 a,, sin?jp?
._p*2 J
=
$ 0D ayg, sin(G+1Esin 5612}
= (Pt
1=
so that
1/p - 1/p o _
T o6-0%2(sin ©) Yar < {7 (& a,.sin’j£) % (sin £)lag
0 P 0 ._,p+2 ]
J*[—z"]
/P - 2 -1
+ S| z a2j+lsin(j+l)£sin JE)  (sin &) ~dg}
0 L_,p*l
j=[5-] (3.25)

Now sin j% < j¢, so that for any ¢ > 0,
. 2. . €. . 2-€. .\ E R >
sin”jf < sin j{ sin j& < (JE) .1 < (3¢)

Hence, using (3.16), the first term on the right side of

(3.25) is bounded by

1/p ™ N 2¢ 1/p _
VAN z 3_2)2 . gfn f af s *—2T£1:—_—é‘)~ / EZE ldg
0 ._(P*2, ] p 0

j= B32)
- 1- 2
pt " P

The second term may be similarly bounded, as may the term

m
I (G—Gg)z(sin ) " lag

n -

1
p
Using this with (3.23), (3.24) gives

'-"‘-



1) a ..A."l ’ 3

A NAA

.
-

| (1_x2)—1/2(u_u0)“ < Clog’” p |
P 0
HY (1) P g

which combined with (3.21)-(3.22) yields (3.11). 0

In Section 4 we will use Theorems 3.1 and 3.3 to bound
the error made when a function that is smooth in the interior
of ' and behaves like (3.8) at the end points is approxi-

mated by functions in Vp(F).

3.3, FY/2 Approximation of Singular Functions

In this section, we consider the approximation of func-

tions u defined on I = [-1,+1] of the form
ulx) = (x+1) %5 (x) (3.26)

where y is as before. We are now interested in approximating

1/

u in the H 2(I) norm by functions in Pp(I). To this end,

we first prove the following lemma.
Lemma 3.2. Lot £ ¢ AY/2(1). Then £' ¢ 5 Y%(1) and

< C | £ (3.27)

£l .
i1/2 (1 172 (1)

Proof. Let y e C;(I). Define y* to be the extension by 0

of y to TR. Then it may be easily seen that y*' = ¢y'*, so

that

(3.28)

.........................

.......... \‘_-.'\-1'\1. i A_' x\q-
A l'.'i» » ’-- ») \' .Q-
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&

‘0 16
3: ' since ¢ ¢ C;(I). (The inequality (3.28) can be verified

I
i taking Fourier transforms, for instance.)

e Now, let f « ﬁl/z(I). We use the following definition,
i: from [11], for the H -1/2 norm:

:ﬂ |<f-'w>L2(I)|

ql’ ”f' ||~_1/2 = sup T

o A et w2 (1)

N

.; Hence with

- <f',¢j> = - <f,ljv',>

Ry L2 (1) L2 (1)

iﬁ We obtain

P | <E,y'> 5 |

. L (I

N Nell _y /2 = sup (1)
- . (0 eCy (1) #l/2 (1)

~ "f,|~1/2( 1) ”‘1’ HH—l/Z(I)

< sup _— ———— <

‘ o Tr‘l’ﬂ—l/z

IJ'eCO(I) H (1)

. sclell,

. 111/2(1\

(-2 by (3.28). This proves the lemma. ]
= With Lemma 3.2, we obtain the following analog to

’.

i Theorem 3.3.

’j'-;l Theonem 3.4. Let u be defined by (3.26). Then there exisits
" a polynomial u, Ain Pp(I) such that
:

-d —

. lu-u_1| 1 < Cp 11og1/2p. (3.29)
- P 1/2(1)

=
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' Procg. Let

SYRN X X
el w= [ udx = 2(x+1)l/2x(x) -2 f (x+1)1/2x'(x)dx =Wy tw,
-1 -1

rf; By Theorem 3.3, there exists v; € PP(I) satisfying

1 1/2

LA 1 —
[ < Cp "log p.

o)
; flw,-v_ || _
» 1 pigl/2 g,

o Also, since x(x) is smooth, w, lies in H2 ¢ for any ¢ > 0.
Applying Theorem 3.1, there exists v; € Pp(I) satisfying

: ) -(2-¢-3) 12
SN flw,=v_ il _ < Cp log™ “p |lw, |l ,_
s 2 P2 2 w2 (1)
S"\ < Cp-llogl/zp

Taking v v1 + v_, we have
p p

. -1, 1/2
5% lw-v_ 1] _ < Cp "log " “p
P2 0,

s Finally, using Lemma 3.2 and taking up = vé, we obtain (3.29).
X 0

» -
h <!. :

PAMATYWAIEE AR
ARARRS o .

AR
ThH YRS

o
.' ‘n‘[ .
RINNT




ol et daas 2 L el el Bl Sk 4 Ll S A Al B d ‘Bl B e b a g a aem ) |

18

Section 4. The p-Version for Boundary Elements

Before we apply the approximation results of Section 3
to the Galerkin solutions of some integral equations of
the first kind, let us recall some basic facts on the
Galerkin method. The key to the error analysis of Galerkin's |
method is the following result by Hildebrandt and Wienholtz !

(15] (see also {11}, [21]).

Lemma 4.1. Llet H be a Hifbent space with duaf B' (not
necessanify identifced with H) and fet A be injective and
continuous frem H into H' satisfying a Gﬁ&ding inequality.

let u ¢ H denote the scofution of
Au = f (4.1)

whene £ ¢ H' and fet uy € Sy ¢ H dencte the sofution of

the Galenkin equations

<AuN,v> = «f,v> forn aff v « Sy © H. (4.2)

Funthenmone fet fon any ¢ ¢ H thene ex{sts ¢y ¢ Sy wd th

¢ = 1im ¢ <n H. Then for N Large encugh the Gafenkin
N

cquations (4.2) ane uniquely sofvable and thene hotds with

a censtant C (ndependent of u, uy and N the ennon estimate

v. ¢ S.} (4.3)

< Cinf {{lu-vll = vy N

[lu-uy i

I .

whene | denctes the noam 4in H,

Next we list several boundary value problems which can
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be reduced to strongly elliptic integral equations, i.e.,
the corresponding integral operators satisfy a Gardina
inequality in appropriate Sobolev spaces. Therefore, due

to Lemma 4.1, the corresponding boundary element Galerkin
methods converge and the quasioptimality (4.3) holds leading
together with the approximation results of Section 3 to
error estimates for the p-version.

The Neumann Achteen pirebfem in acoustics describes the
scattering of a plane wave at a hard obstacle T. Here T 1is
given by an oriented open arc being a finite piece of a
smooth curve in IRZ. The orientation defines the normal
vector n pointing to the side T2 (see Fig. 1). The opposite
side of T will be denoted by Fl. The scattering problem

leads to the problem: Find the pressunre amplitude f{i(efd

u « Hl (§2

loc ) satisfuing T

r 2

N
3=/

(A+k?)u = 0 in 9. = RO\ T

2L M (4.4)

au _ Jdu _ )
= rl =9y b rz = g, X Fig. 1.

Here k # 0, Im k > 0 and g,,g, ¢ 1 172(ry are given with

g := gy -9, ¢ ﬁ‘l/z(r). In addition, we require the

Ssommerfeld radiation condition

1/2 1/2

-g - iku - o(r— ) and u = O(r

)

) as r = |[x| » =, (4.5)

From [23]) we know that for Imk > 0, k # 0 the problem (4.4),

(4.5) has no eigensolutions and furthermore it can be

reduced to a hypersingular integral equation on T,




Theonem 4.1 [23]. Let 9,+9, and k be given as above. Then
1

thene hofda: (i) u « Hloc(Qr) s0fves (4.4), (4.5) (f and
only <4 the qump [u]]r € ﬁl/z(r) satisfies the {ntegnraf
cquatecen
32
Dlul(z) := =2/[ul(g) oA ¢>(2,C)dsC = f(z), zZ e T (4.6)
r zZ T
W th

f(2) = g,(2) + gy(z) + 2/(g;(C)-g,(z)) 5=— &(z,L)ds, (4.7)
r z

n 4
whene
d(z,0) = F u{t xlz-z]) (4.8)
and Hél) (s the Hankel function of the finst kind and onden
cere.  (11) There exists exactly one solutdion Y « ﬁl/z(r),

vo= [u]lr 0f (4.6).

The proof of the assertion (ii) in {23] hinges on the
fact that D is a strongly elliptic pseudodifferential operator
of order 1. Therefore there exists a constant Yy 2 0 and

a compact mapping C ﬁl/z(r) -+ n'l/z(r) such that

1
2
Re< (D+C. ) {, ¢> 2y, w2 (4.9)
1 12(r) 1 51721

for every ¥ ¢ ﬁl/z(r). This yields that D is a Fredholm

operator of index zero, and the bijectivity of D follows

therefore from its injectivity which is guaranteed by the
above assumptions on the wave number k. Note that the

assumptions on 9,.9, imply f € n'l/z(r).
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Using localization and Mellin transformation Stephan
and Wendland derive in [23] the following explicit regularity

result for the solution of (4.6) near the end points 2_,z

1°72

of

Lemma 4.2 [23]. Fen 0 < o < 1/2 fet a, ¢ H1/2+9(r), i =1,2,
be gq«ven. Then the sclution [u]lr e al/2(r) 0f the d{nteghaf

equation (4.6) has the foam

N0

172 + v, with v, ¢ 53/2+”(T), a., ¢ IR.

TPy Xy T VY 0 i

[u}lr = 1P

i=1

(4.10)
Hene 0y denotes the Euclidean distance between z ¢ T and the
end point z, of T. X3 i3 a Cm—cut-ogg function with

0 < X; < 1 and Xy = 1 nean to Zyo Xy = 0 at the opposite

end point, i = 1,2,

The p-vension Gaferkin methed for the hypersingular
integral equation (4.6) reads: Find vp € vg(r) Auch that
with £« W Y/2(T) given by (4.7) fon ate by - vg(r) there
hefds

<Dvp,¢p>L2(r) = <f,¢p>L2(r) (4.11)

Here Vg(r) denotes the set of continuous, piecewise

polynomials of degree < p which vanish at the end points

~1/2

of T as introduced in Section 2. Note vg(r) < H (ry.

There holds the following convergence result for the Galerkin

scheme (4.11).
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:if Thecnem 4.2. Llet p be sufficiently farge. Then the Galenkin
I; equatcons (4.11) are uniquefy scfvable and for the ernon

between the exact sofution [u][r € ﬁl/z(r) cf (4.6) and the

Gafevkin solutdion vp € vg(r) we have

o -
M lu}-v_||_ < Cp 1 logl/zp (4.12)
4 1/2
u.\-. N H )
k?: whete the censtant C (s d{ndependent of p.
o
'\"

Precg. We observe that the operator D in (4.6) fulfills the

:ﬂg requirements on A in Lemma 4.1 with H := Hl/z(r), and

oo -1/2 . e

o H =H / (T') since D satisfies the G&rding inequality (4.9)
Vo ~1/2 1

Yy and D is bijective from H / (T') onto H /Z(T) due to

Theorem 4.2. On the other hand {vg(r)} is a sequence of

approximating subspaces of ﬁl/z(r) as p » » and therefore
0

(" Vp(T) is a candidate for the subspace S in Lemma 4.1 with
Eiﬁ p instead of N. Thus the convergence of the p-version for

E; the Galerkin procedure (4.11) is an immediate consequence
g) of Lemma 4.1. The rate of convergence in (4.12) follows
'fiz from the quasioptimality (4.3) together with the regularity

?5 result (4.10), where the approximation result (3.11) is used to
'jé approximate the singular part in (4.10) and Theorem 3.1 is used
i? to approximate the regular part Vg- g
E: Remark 4.1. (i) The decomposition (4.10) shows that the exact
‘:ﬁf solution ¢ = [u]lr of the integral equation (4.6) belongs
Ei. to KI5 () for any € > 0. Therefore the h-version of the
?ii Galerkin procedure for equation (4.6) gives only an estimate
E%: of order O(hl/z) for the Galerkin error, if a uniform mesh is used.
iﬁ_ (ii) Application of the estimate (3.2) to the quasioptimality
’:1!_

I&

J'V’
R R Ry RN

J-f.f.i‘fJ~MJWJLM&M"
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estimate (4.3) gives with y ¢ ﬁI_E(T)
- + .
-y ~1/2 < cp 12 1012 heli .
(I H (1)

The better estimate (4.10) follows from Theorem 3.3.

The Ditvichfet screen probfem in acoustics describes

the scattering of a plane wave at a soft obstacle I'. With

-

[ being an open arc as introduced above the scattering prob-

1

lem becomes: Find the pressunre amplitude fiefd u - Hloc(Qr)

satisfying
(A+k%)u = 0 in 9. = R°\F, u=gon ¥ (4.13)

together with the nadi{ation condition (4.5) fon given

g « HY2(T) and X # 0, Imk 2 0.

We know from [22] that with the above restrictions on
the ware number k the Dirichlet problem (4.13), (4.5) has
no eigensolutions. Furthermore this Dirichlet problem can

be reduced to a weakly singular integral equation on T [22].

Theenem 4.3 [22). Llet g € Hl/z(r) be given and X #0, Im k 20.

Then thewe holds: (i) u « %OC(Q ) sofues (4.13), (4.5) 4§

~-1/2

and cenby 4§ the fump [%%] (T) satisfies the integraft

pquation

V[%%](Z) 2= —2{[2—%](“4‘(2,(})65C = 2g(z), z e T (4.14)

whene ¢ {3 given {(n (4.8)

.. . . ~-1/2 .. an
(ii) Thene exdists exactly one sofuticon y € H / (7, v = [x=]
: an’|r
E"\
. y x" e B PP .‘ ;-‘_':_:-"_:-" N N T AT S TR e W T S T T T SR
L‘fA {g LRV a...i\. Py ..i~ . \u&.«-&.‘l— e u:.s. g \ '.'.i‘..&.m Y i;.f_;in. ¥ \A“.A':n‘}sif.\ A-.'n’}:*':'ul‘?df\}\):'.-\ Y -."' n\i\‘-\’\..h L’\J . j
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of (4.14).
(iii) let a H3/2+U(F), 0 - n < 1/2, be adiven. Then with
the metation cf Lemma 4.2 the scfution (52 . /2
¢t (4.14) has the foum
AUy 2 -1/2 . ~1/2+0
REU N L T T A (g » RS

The proof of assertion (ii) in [?2] uses that the
single layer potential operator V is a strongly elliptic
pseudodifferential operator of order -1. Therefore there

holds with a constant Y, and a compact operator

~— / [}
C,: H l"2(?) > HI/Z(F) the Garding inequality
Re< (V+C,) W, 1> > v, Hu4|f_1/2 (4.16)
’ LE(T) H (1)

for any i« ﬁ'l/z(r).

The decomposition (4.15) is obtained in [22] by
localizing the weakly singular integral equation (4.14) and
applying the Mellin transformation. The explicit form
{(4.15) of the solution near the end points z, i=1,2,
allows us to derive optimal error estimates for the Galerkin
solution.

The p~version Gaferkin method for the weakly singular
integral equation (4.14) reads: Find wp € Sp(r) such that

H1/2

with g « (1) !

<\ , = 2 , > [‘ (2 I 4-
Up ¢p> g ¢p fon alt ¢p Sp( ) (4.17)

Here sp(r) denotes the set of piecewise polynomials of degree
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< p subordinate to a partitioning of I as introduced in

Section 2. Note sp(r) a ﬁ'l/z(r)_

Thecnem 4.4. Lot p be sufficeenttfu farae. Then the Galenkun

o & XUV OAY

cquateony (4.17) are unigqueluw sofvable and the evven between
C) the exact scfutcon v o4 (4.14) and the Garenkan scfution

:p £ Sp(f) vk (4.17) Aatasfien

. fl N "1 1/2
LI Cp log P (4.18)
P2

L weth a constant C {ndependent o4 p.

o Peccg. Due to the Ggrdinq inequality (4.16) application of

-;: Lemma 4.1 yields for the choices A = V and H = 5—1/2

ul/2(r)

(') with
H' = the convergence of the Galerkin scheme (4.17).
. Note that {SP(F)} as introduced in Section 2 is a sequence

o of approximating subspaces for ;'1/2(

') as p * =, The esti-
o mate (4.18) follows from the quasioptimality (4.3) together with
the regularity result (4.15) where (3.29) is used to approximate

the singular part in (4.15) and Theorem 3.2 is used to approxi-

N mate the regular part ¥,. 0

: } The extexaicon Neumann [Dindichlet) probfem in acoustics
?5; describes the scattering of a plane wave at a hard (soft)

obstacle § being a bounded domain in JRB. For simplicity

we assume that the Boundary T of 0 is a closed, smooth,

simply connected surface. Then the scattering problem leads

1

3.~ . .
loc (RTS8 ratisfuying

o to the problem: Find u € H

%‘5 (A+k2)u =0 {n R \G (4.19)




‘{;i %% = g on T (Neumann) (4.20)
o~

_: chr

5 ' u=f on [ (Dinichlet) (4.21)
!: fon k # 0, Imk 2 0 togethen with the radiation condition

:}; %% - iku = o(r‘l), u = O(r~1) ar r = |x| + o, (4.22)
"\

s Here we make the general assumption:

- In the exterior Neumann (Dirnichlet) problem 4in 1R3\§

';;: Let k2 be different from the edigenvafues of the

<

intenion Dindichlet {Neumann) preblem in 9. (4.23)

The restriction to the three-dimensional case is only

s for simplicity. Of course we can derive analogous results

3:}5 also for the corresponding 2D problems. Easy modifications

i ,\-:."

E;‘ of the procedure in [16], [20] lead directly to a boundary
A integral equation method for the Neumann and the Dirichlet

problem. One obtains immediately existence and uniqueness

,ii results analogous to Theorems 4.1 and 4.2. Let us first

=

f«gf consider again the Neumann problem (4.19), (4.20), (4.22).
2

A&Z Theonem 4.5. Let g ¢ H_l/z(F) be agdiven with fg ds = 0.

[} » ~

e r -

o~ Then thene holds with k as above (i) u e H}__(R>\T) s0lves
(4.19), (4.20), (4.22) if and only if u e HY/2(F) satisgies
- N

.."-_ . .

.t the integhral equation

% -

“if Du(z) := -ZIU(C) TR ¢(z,c)dsz = gf{z), z ¢ T (4.24)
S r 2t

\-,,::.

~

%

.

» B8y &
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" whe e
’...' eik I Z"'C l
-- Q‘(Zr%) = TT_— p z_?l— (4.25)
‘\‘:\

N

S and

N

v - - - r d oA

o a(z) glz) Z%q(c) n, Mz,0)ds, (4.26)
:: .. . . 1/2,~

- (1i) Thenre excsts exactlu one scfution u ¢« H (T of (4.24).

(iii) Llet g ¢ HS(F), s > -1/2 and Fobe anafytic, Then the

':;j scfutcon u of (4.24) befongs to Hs+l(F).
o

N Correspondingly using the direct approach of [20], [22)
® B

e one obtains for the Dirichlet problem (4.19), (4.21), (4.22):
L 1/2 % , .

[ Theonem 4.6. Llet £ ¢ H (I'y be gdiven. Then with k as abeve
( thewe hofds: (i) u < H]__(R\Q) solves (4.19), (4.21), (4.22)
- b and onfy (f %% € H—I/Z(F) satisfees the (ntegraf equation
5 v &(z) = -2f $9(0)a(z,0)ds, = Fl2), 2z ¢ T (4.27)
an . T an t 4 ! ’ )

;:? with ¢ as (n (4.25) and

s flz) := f(z) + 2fu(n) & ¢(z,0)ds (4.28)

) X n 4

‘;ﬁ' r

S - ~

Sl (ii) Thene exists exactly one sclutdion %% ¢ H 1/2(1‘) of

e (4.27).

- (iii) Let £ ¢ H°(T), s > 1/2, and T be anafutic. Then the

sy a -

o Aofution %% 0f (4.27) bebongs to H® NGF

oy Proof§s of Theonems 4.5 and 4.6. For brevity we sketch only
I':

e the main steps. The equivalence (i) between the boundary
-\'.1‘ v

o

o

1950

®

3
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value problems and the integral equations is standard and
follows immediately from Green's formula (see [16]), [20]).
The existence and uniqueness results (ii) of the solution
of the respective integral equation are based on the strong

ellipticity of the pseudodifferential operators D and V,

1.e., there hold with constants ;1,;2 > 0 and compact mappings
51: HI/Z(F) - H-l/z(?) and Ez: Hkl/z(F) > Hl/z(F) the G;rding

tnequalities

~ ~ 2
Re- (D+C,) v, v> o2y, JIv]] N (4.29)
1 L2 (F) 1 Hl/2(F)
~ ~ 2
Re< (V+C_ )y, y> - >y Hw” _ N (4.30)
2 L2 (T) 2 n~172 (7
for all v « Hl/z(F) and § ¢ H—l/z(F). Hence
p: HY2(F) ~ 1 V2(F) ana v: 87 Y2(F) » ul/2(F) are Fredholm

operators of index zero. Under the assumption (4.23)
we have for k # 0, Im k > 0 that the integral equations
have no eigensolutions. Hence the above mappings D and V
are bijective yielding assertion (ii). The regularity
results (iii) in Theorems 4.5 and 4.6 follow in a standard
way from the ellipticity of the pseudodifferential operators
D and V (see for example [19], [20]). O
Finally, we consider the Galerkin equations for the
integral equations (4.24) and (4.27) and show the conver-
gence of the p-version,
The Gafenkin method (p-vension) for the integral equa-
tion (4.24) reads with vp(F) defined by (2.7):

“1/2(%) given by (4.26)

Find v € VP(F) such that with g ¢ H
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holdas fo ¢ v_(T
there holds fon al ¢p € p(F)

<Dv_,¢_> = «<q, 4.
D ¢p 5 g ¢p> 2 (4.31)

~ ~

L°(r) L™ ()
Correspondingly, the Gaferkin method (p-vensicn) for
the integral equation (4.27) reads with Sp(?) given by (2.6):

1/2

Find wp € Sp(?) such that with f < H (T) aiven by (4.28)

there holds forn alf s _(T
1etre ho §o ¢p € p( )
<y ¢ > = <f,¢ > - (4.32)
PP LA(F) P LA(T)
Theorem 4.7. Let p be sufficiently Lange and g ¢« H (T), s> -1/2.
Then the Galenkin equations (4.31) are uniquefy solvable.
Let u ¢ HS+1(F) be the exact sofution of (4.24) and vp € Vp(f)

be the Galernkin solution then we have forn s 2 -1/2

S T (4.33)
HS (T)

In

Hu-v_|i N
P yl/2F

with a constant C independent of u, g and p.

Proo§. Obviously, since Ggrding's inequality (4.29) holds

the assumptions of Lemma 4.1 are satisfied if we choose

A-op, n=n72F, u = 5V3F) and s = V() oY/ 2(F) .
Note that T is a closed, bounded, analytic surface. Thus

for p large enough Lemma 4.1 guarantees the unique solvability
of the Galerkin equations (4.31) and the quasioptimal esti-

mate for the Galerkin error

Hu—vpﬂﬂl/z(f) < C inf {Hu—prHI/z A A

- v (T)) (4.34)
(%) “p

From Theorem 4.5 (iii) we know that for s 2 -1/2 with a




.\‘ -

.\:

f} 30
®

-
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- constant C

o
|

[ all ~ < cilall [ (4.35)

. #S*(F) S (T)

: Therefore we can apply the approximation result (3.1) of

o Theorem 3.1 to (4.34) and obtain (4.33) by using (4.35). [
\

‘:j Theonem 4.8, Let p be sufficiently farge and £« wS(T),

190

K- s > 1/2. Then the Galenkin equation (4.32) ane uniquefu

[\ -

sobvable. Let 29 ¢ uSTH(T) be the exact solution of (4.27)

- and wp € SP(F) be the Gafenrnkin sclution, then we have 4on

% s > 1/2

7 Ju -(s-1/2) ;%

<L Nam-w Il 1,5, . sCp Wl _ (4.36)
s nOP gt/ 1S (F)

itj . . Ju ~

o with a constant C {ndependent of x o+ f and p.

d{ Preof. Again, application of Lemma 4.1 gives the assertion
® if we take A = v, H = 0 /2(F), u' = uV/4(T) ang

,f' Sy = SP(F) < H—l/z(F) since the Garding inequality (4.30)

E: holds. Note again that I is a closed, bounded, analytic

'il surface. From Theorem 4.6 (iii) we know that for s > 1/2

b

b with a constant C

N

.5: P

i Wsmll ooy o s cllell o . (4.37)
. H (") H™(T)

X

On the other hand, Lemma 4.1 yields

" Ju . du ~

. 5= -w Il . < Cinf {||ls=-¢ | . b es (T))}
52 an " Ypl-1/2 %, n - Tplly-1/2 ¥, p

- (4.38)
,;j Therefore by applying Theorem 3.2 and Remark 3.1 to (4.38) we
®
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obtain with (4.37) the desired estimate (4.36). fl

Remark 4.2. Theorems 4.7, 4.8 show that for the p-version,
the rate of convergence obtained depends only upon the smooth-
ness of the data. Hence, when f and 5 are arbitrarily smooth,
one obtains arbitrarily high rates of convergence. This is

in direct contrast to the h-version, where the rate of conver-

gence depends in addition upon the degree of polynomials used

and is therefore not very high even for smooth solutions.

Finally, we remark that results analogous to the above
ones can be shown for two-dimensional crack problems in
linear elasticity, since those problems can be reduced to
first kind integral equations like (4.6) or (4.14) for the
components of the jumps of the displacement or traction
across the crack line I'. Regularity results analogous to
(4.10) and (4.15) hold for the solutions (see [17}), [22},
(23]). Hence the corresponding Galerkin schemes (4.11) and
(4.17) will lead componentwise to error estimates like (4.12)

and {4.18) with obvious modifications.
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